Archdiocese of Newark Catholic Schools

Curriculum Mapping

Curriculum mapping is a process that helps schools and districts/dioceses determine the "agreed-upon" learning for all students. Curriculum mapping was undertaken in the Archdiocese of Newark in order to ensure that a consistent, clearly articulated curriculum infused with Gospel values is being provided to all students in our schools. The curriculum maps for the Catholic schools of the Archdiocese of Newark identify the content to be taught and skills to be mastered at each grade level.

The expertise and experience of the educators within our schools is the main source for determining the content and skills students will be expected to master. The Archdiocesan curriculum maps are developed through a collaborative process which involves individual teacher contributions, small group sessions and larger group meetings. Relevant educational standards, including those proposed by content area experts, the New Jersey Core Curriculum Content Standards, and the Common Core State Standards, are used as a resource in the curriculum mapping process. The resulting consensus maps reflect the collective thinking of classroom teachers based on their observation of student learning and their knowledge of educational practice and research. The Archdiocesan curriculum maps include teacher generated ideas for the infusion of Gospel values and faith connection activities.

While the curriculum maps clearly articulate the expected learning for all students, individual teachers have the flexibility to teach the content and skills in their own manner by:

- utilizing their own particular strengths and teaching style
- addressing the varying learning needs of their students
- determining the order in which the content and skills are presented within a marking period
- including additional content and skills once students have met the learning expectations identified in the curriculum map

Administrators at all levels will maintain the responsibility to ensure that teachers are following the curriculum maps and that appropriate teaching is being conducted. This will be done through a combination of classroom observations, faculty meetings, professional development opportunities and teacher evaluations, as well as by using various measurement tools, including but not limited to in-class and standardized testing. The Archdiocesan curriculum maps will help ensure the academic excellence that is integral to the mission of our Catholic schools and will provide educators and parents with a clear understanding of the learning expectations at each grade level.

Archdiocese of Newark Catholic Schools Curriculum Map for High School Algebra 1

First Marking Period

Standards \quad Content \quad Skills \quad Assessment \quad Gospel Values

This curriculum map reflects the general expectations of student learning in Algebra 1 at the high school level. Each school will determine the course-specific expectations based on the level of the course or courses offered. Schools will also determine the sequence in which the various topics are taught within the specific course.
N.RN. 1 Explain how the definition of
the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1 / 3}$ to be the cube root of 5 because we want $\left(5^{1 / 3}\right)^{3}=5^{(1 / 3) 3}$ to hold, so $\left(5^{1 / 3}\right)^{3}$ must equal 5 .
N.RN. 2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.
A.SSE. 1 Interpret expressions that represent a quantity in terms of its context.
a. Interpret parts of an expression, such as terms, factors, and coefficients.
b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^{n}$ as the product of P and a factor not depending on P.
A.SSE. 2 Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as $\left(x^{2}-\right.$ $\left.y^{2}\right)\left(x^{2}+y^{2}\right)$.

Compare, classify, and order real numbers and demonstrate an understanding of absolute value (using a number line).

Translate verbal phrases into algebraic
expressions, equations or inequalities.

Order of Operations

Algebraic

Expressions

Student learning will be assessed on a continual basis using various types of formal and informal assessments. A list of possible assessment methods is provided below:

Tests
Quizzes
Projects
Homework
Classwork
Student presentations
Observation of student
work
Critical thinking activities

Performance Tasks
Online Programs
Class participation
Mid-term exams
Final exams

Gospel values should be evident in the classroom environment and referenced and reinforced throughout the curriculum.

Gospel Values

Community
Compassion
Faith in God
Forgiveness
Hope
Justice
Love
Peace
Respect for Life
Service
Simplicity
Truth

Teachers will also highlight elements of Catholic identity that can be related to topics in the Math curriculum.

Archdiocese of Newark Catholic Schools Curriculum Map for High School Algebra 1

First Marking Period

Standards
A.SSE. 3 Choose and produce an
equivalent form of an expression to
reveal and explain properties of the
quantity represented by the expression.

A.CED. 1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
A.CED. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
A.CED. 4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=$ IR to highlight resistance R.
A.REI. 1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method
A.REI. 2 Solve simple rational and radical equations in one variable, and

Content
Properties of Addition, Multipli- cation \& Equality

Linear Equations

Literal Equations

Identify and apply the properties of real numbers.

Select the correct inverse operations in proper sequence for solving linear equations.

Recognize when an equation has one solution, infinite solutions, or no solution.

Check the accuracy of a solution by substituting in the original equation.

Solve literal equations for a given variable.

Rewrite a formula to solve for any one of its variable components.

Archdiocese of Newark Catholic Schools Curriculum Map for High School Algebra 1

First Marking Period

Standards
give examples showing how extraneous

A.REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

A.CED.4: See page 2

N.Q. 1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.
N.Q. 2 Define appropriate quantities for the purpose of descriptive modeling.
N.Q. 3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
F.IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include. intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

Archdiocese of Newark Catholic Schools Curriculum Map for High School Algebra 1

Second Marking Period

Archdiocese of Newark Catholic Schools Curriculum Map for High School Algebra 1

Second Marking Period

Standards	Content	Skills	Assessment	Gospel Values
F.IF. 1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=$ $f(x)$.	Relations and Functions	Identify when a relation is a function. Determine whether a relation is a function when given its graph by means of the vertical line test.		
F.IF. 2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.		Define a function's domain and range and organize this data in table form.		
F.IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.		Rewrite a two-variable equation in function form.		
F.IF. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.				

Archdiocese of Newark Catholic Schools
 Curriculum Map for High School Algebra 1

Second Marking Period

Second Marking Period	Sontent	Skills	Assessment	Gospel Values
A.CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.	Graphs of Linear Equations	Graph linear equations and understand the significance of the slope and intercept points of these graphs.		
A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.		Identify and graph \boldsymbol{x} - and y-intercepts.		
A.REI.10 Understand that the graph of an equation in two variables is the set of all its solutions ploted in the coordinate plane, often forming a curve (which could be a line).		Determine direction of a line from the slope.		
F.IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=$ $f(x)$.		Identify slope from a graph and calculate using two points.		
F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.				
F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.				

Archdiocese of Newark Catholic Schools
 Curriculum Map for High School Algebra 1

Second Marking Period

Standards	Content	Skills	Assessment
F.IF.4 See page 5 F.IF.5 See page 5	Rate of Change/ Flope average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.	Use slope to determine average rate of change in application problems. Interpret the slope (rate of change) and intercept (constant term) of a linear model in the context of the data in real world problems.	
F.IF.1b Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.			
F.IF.1c Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.			
S.ID.7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.			

Archdiocese of Newark Catholic Schools
 Curriculum Map for High School Algebra 1

Second Marking Period

Standards	Content	Skills	Assessment	Gospel Values
A.CED. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	Direct Variation	Write and solve linear equations that use direct variation.		
A.CED. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.				
F.IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.				
A.CED. 1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.	Absolute Value Equations	Write and solve absolute value equations.		

Archdiocese of Newark Catholic Schools
 Curriculum Map for High School Algebra 1

Second Marking Period

Standards and piecewise-defined functions, including step functions and absolute value functions.
A.CED. 1 See page 8
A.CED. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.
A.REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Graphs of Linear Inequalities

Graph linear inequalities and understand the significance of the slope and intercept points of these graphs

Archdiocese of Newark Catholic Schools Curriculum Map for High School Algebra 1

Third Marking Period

Standards	Content	Skills	Assessment	Gospel Values
A.CED. 1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. F.IF. 1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=$ $f(x)$. F.IF. 2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. F.IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.	Writing Linear Equations	Write an equation of a line given slope and any point on the line, or, any two points on the line.	Student learning will be assessed on a continual basis using various types of formal and informal assessments. A list of possible assessment methods is provided below: Tests Quizzes Projects Homework Classwork Student presentations Observation of student work Critical thinking activities Performance Tasks Online Programs Class participation Mid-term exams Final exams	Gospel values should be evident in the classroom environment and referenced and reinforced throughout the curriculum. Gospel Values Community Compassion Faith in God Forgiveness Hope Justice Love Peace Respect for Life Service Simplicity Truth Teachers will also highlight elements of Catholic identity that can be related to topics in the Math curriculum.

Archdiocese of Newark Catholic Schools
 Curriculum Map for High School Algebra 1

Third Marking Period

Standards	Content	Skills	Assessment	Gospel Values
F.BF. 1 Write a function that describes a relationship between two quantities. F.LE. 1 Distinguish between situations	Forms of Linear Equations	Differentiate the various forms of linear equations: Slope-Intercept, Standard, Point-Slope.		
functions and with exponential functions.		Choose the most appropriate form of a linear equation given the problematic situation.		
		Transform from one form of a linear equation to another form.		
G.GPE. 5 Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).	Parallel and Perpendicular Lines	Define parallel and perpendicular slopes. Write equations for parallel and perpendicular lines.		

Archdiocese of Newark Catholic Schools
 Curriculum Map for High School Algebra 1

Third Marking Period

Standards	Content	Skills	Assessment	Gospel Values
A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	Systems of Linear Equations	Solve systems of linear equations both graphically and algebraically; choose the best method given the system.		
A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.		Understand the various types of solutions: one solution, infinite solutions, or no solution.		
A.REI.5 Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.				
A.REI.6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.				
A.REI.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).				

Archdiocese of Newark Catholic Schools Curriculum Map for High School Algebra 1

Third Marking Period

Standards	Content	Skills	Assessment	Gospel Values
A.REI. 11 Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=$ $g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. N.RN. 1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1 / 3}$ to be the cube root of 5 because we want $\left(5^{1 / 3}\right)^{3}=5^{(1 / 3) 3}$ to hold, so $\left(5^{1 / 3}\right)^{3}$ must equal 5 . N.RN. 2 Rewrite expressions involving radicals and rational exponents using the properties of exponents. A.SSE.3c Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15^{t} can be rewritten as $\left(1.15^{1 / 12}\right)^{12 t} \approx 1.012^{12 t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.	Laws of Exponents	Simplify exponential expressions using the properties of exponents. Recognize different types		

Archdiocese of Newark Catholic Schools Curriculum Map for High School Algebra 1

Third Marking Period

Standards	Content	Skills	Assessment	Gospel Values
A.APR. 1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. A,CED. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.	Polynomial Operations (excluding division) Systems of Linear Inequalities	of polynomials and write them in standard form. Classify each type of polynomial expressions by degree and number of terms. Simplify polynomial expressions. Add, subtract, multiply polynomial expressions. Solve systems of linear inequalities graphically.		

Archdiocese of Newark Catholic Schools Curriculum Map for High School Algebra 1

Fourth Marking Period

Standards	Content	Skills	Assessment	Gospel Values
A.SSE. 2 Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as (x^{2} $\left.y^{2}\right)\left(x^{2}+y^{2}\right)$.	Items marked with an asterisk (*) are considered optional. Factoring	Items marked with an asterisk (*) are considered optional. Find the greatest common factor of a polynomial.	Student learning will be assessed on a continual basis using various types of formal and informal assessments. A list of possible assessment	Gospel values should be evident in the classroom environment and referenced and reinforced throughout the curriculum.
A.SSE. 3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.		Factor polynomials completely using various methods.	methods is provided below: Tests Quizzes Projects	Gospel Values Community Compassion Faith in God Forgiveness
A.SSE.3a Factor a quadratic expression to reveal the zeros of the function it defines.	Solving Quadratic Equations by Factoring	Solve quadratic equations by means of factoring and zero-product property.	Homework Classwork Student presentations	Hope Justice Love
A.SSE.3b Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.		Check all solutions.	Observation of student work Critical thinking activities	Peace Respect for Life Service Simplicity
A.REI.4a Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form.			Performance Tasks Online Programs Class participation Mid-term exams Final exams	Truth Teachers will also highlight elements of Catholic identity that can be related to topics in the
A.REI.4b Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the				Math curriculum.

Archdiocese of Newark Catholic Schools Curriculum Map for High School Algebra 1

Fourth Marking Period

Standards
equation. Recognize when the quadratic

N.RN. 1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1 / 3}$ to be the cube root of 5 because we want $\left(5^{1 / 3}\right)^{3}=5^{(1 / 3) 3}$ to hold, so $\left(5^{1 / 3}\right)^{3}$ must equal 5 .
N.RN. 2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.
A.APR. 1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
A.REI. 2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

