Name
Introduction to Calculus (4522) Summer Homework Assignment
This summer assignment is for students who will be entering Introduction to Calculus in September. This course is a college level Calculus I course and students will be expected to put in college level work and effort. This summer packet contains a few of the necessary skills required to be successful in this course. Assignment is due on September 9 at the beginning of class. No late work or excuses will be accepted.
 You must: Print the PDF – both Multiple Choice and the Factoring Complete the assignment showing all work on the PDF (to be handed in at the beginning of class on 9/9/19)
Good Luck!!!

"On my honor, I have neither given nor received any unauthorized aid on this Summer Packet."

Signature____

Name:

Date:

- What is the slope of the line 1. perpendicular to the line represented by the equation 2x + 4y = 12?
 - A. -2
- C. $-\frac{1}{2}$

The equation of a line is $y = \frac{2}{3}x + 5$. 2. What is an equation of the line that is perpendicular to the given line and that passes through the point (4,2)?

A.
$$y = \frac{2}{3}x - \frac{2}{3}$$
 B. $y = \frac{3}{2}x - 4$

B.
$$y = \frac{3}{2}x - 4$$

C.
$$y = -\frac{3}{2}x + 7$$

C.
$$y = -\frac{3}{2}x + 7$$
 D. $y = -\frac{3}{2}x + 8$

3. Which equation represents a line that is parallel to the line whose equation is 3x - 2y = 7?

A.
$$y = -\frac{3}{2}x + 5$$

A.
$$y = -\frac{3}{2}x + 5$$
 B. $y = -\frac{2}{3}x + 4$

C.
$$y = \frac{3}{2}x - 5$$
 D. $y = \frac{2}{3}x - 4$

D.
$$y = \frac{2}{3}x - 2$$

4. If x-3 is a factor of $x^2 + x - 12$, then the other factor is

A
$$4x-3$$

A.
$$4x - 3$$
 B. $3x - 4$

C.
$$x - 4$$

C.
$$x - 4$$
 D. $x + 4$

Written in factored form, the binomial $a^2b - ab^2$ is equivalent to

A.
$$ab(a-b)$$

A.
$$ab(a - b)$$
 B. $(a - b)(a + b)$

C.
$$a^2(b - b^2)$$

C.
$$a^2(b-b^2)$$
 D. $a^2b^2(b-a)$

Written in factored form, the trinomial $3x^2 + 5x - 2$ is equivalent to

A.
$$(3x + 1)(x - 2)$$

B.
$$(3x-1)(x+2)$$

C.
$$(3x + 2)(x - 1)$$

D.
$$(3x-2)(x+1)$$

When factored completely, 7. $m^5 + m^3 - 6m$ is equivalent to

A.
$$(m+3)(m-2)$$

B.
$$(m^3 + 3m)(m^2 - 2)$$

C.
$$m(m^4 + m^2 - 6)$$

D.
$$m(m^2 + 3)(m^2 - 2)$$

The expression $\left(\frac{m^2}{m_3^{\frac{1}{3}}}\right)^{-\frac{1}{2}}$ is equivalent to

A.
$$-\sqrt[6]{m^5}$$

B.
$$\frac{1}{\sqrt[6]{m^5}}$$

D.
$$\frac{1}{m\sqrt[5]{m}}$$

The solution to the equation 9. $18x^2 - 24x + 87 = 0$ is

A.
$$-\frac{2}{3} \pm 6i\sqrt{158}$$

A.
$$-\frac{2}{3} \pm 6i\sqrt{158}$$
 B. $-\frac{2}{3} \pm \frac{1}{6}i\sqrt{158}$

C.
$$\frac{2}{3} \pm 6i\sqrt{158}$$
 D. $\frac{2}{3} \pm \frac{1}{6}i\sqrt{158}$

D.
$$\frac{2}{3} \pm \frac{1}{6}i\sqrt{158}$$

10. What is the solution, if any, of the equation.

$$\frac{2}{x+3} - \frac{3}{4-x} = \frac{2x-2}{x^2 - x - 12}$$
?

11. When b > 0 and d is a positive integer, the expression $(3b)^{\frac{2}{d}}$ is equivalent to

A.
$$\frac{1}{\left(\sqrt[d]{3b}\right)^2}$$

B.
$$\left(\sqrt{3b}\right)^d$$

C.
$$\frac{1}{\sqrt{3b^2}}$$

D.
$$\left(\sqrt[d]{3b}\right)^2$$

12. The solution set for the equation $\sqrt{56-x}=x$ is

A.
$$\{-8,7\}$$
 B. $\{-7,8\}$

- The zeros for $f(x) = x^4 4x^3 9x^2 + 36x$ 13.
 - A. $\{0, \pm 3, 4\}$
 - B. $\{0,3,4\}$
 - C. $\{0, \pm 3, -4\}$
- D. $\{0, 3, -4\}$

14. If $g(c) = 1 - c^2$ and m(c) = c + 1, then which statement is not true?

A.
$$g(c) \cdot m(c) = 1 + c - c^2 - c^3$$

B.
$$g(c) + m(c) = 2 + c - c^2$$

C.
$$m(c) - g(c) = c + c^2$$

$$D. \quad \frac{m(c)}{g(c)} = \frac{-1}{1-c}$$

- 15. A solution of the equation $2x^2 + 3x + 2 = 0$ is
 - A. $-\frac{3}{4} + \frac{1}{4}i\sqrt{7}$ B. $-\frac{3}{4} + \frac{7}{4}i$
 - C. $-\frac{3}{4} + \frac{1}{4}\sqrt{7}$ D.

16. The expression $\frac{4x^3 + 5x + 10}{2x + 3}$ is equivalent to

A.
$$2x^2 + 3x - 7 + \frac{31}{2x + 3}$$

B.
$$2x^2 - 3x + 7 - \frac{11}{2x + 3}$$

C.
$$2x^2 + 2.5x + 5 + \frac{15}{2x + 3}$$

D.
$$2x^2 - 2.5x - 5 - \frac{20}{2x + 3}$$

The equation $4x^2 - 24x + 4y^2 + 72y = 76$ 17. is equivalent to

A.
$$4(x-3)^2 + 4(y+9)^2 = 76$$

B.
$$4(x-3)^2 + 4(y+9)^2 = 121$$

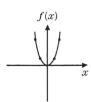
C.
$$4(x-3)^2 + 4(y+9)^2 = 166$$

D.
$$4(x-3)^2 + 4(y+9)^2 = 436$$

- The expression $(x^2z^3)(xy^2z)$ is equivalent to

- 19. The expression $\frac{\frac{1}{3} + \frac{1}{3x}}{1 + \frac{1}{1}}$ is equivalent to
 - A. $\frac{x+1}{x+3}$
- B. 2
- C. $\frac{3x+3}{x+3}$

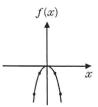
- 20. Which is an equation of the line that has a y-intercept of -2 and is parallel to the line whose equation is 4y = 3x + 7?
 - A. $y = \frac{3}{4}x 2$ B. $y = \frac{3}{4}x + 2$

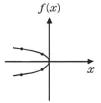

 - C. $y = \frac{4}{3}x 2$ D. $y = -\frac{4}{3}x 2$

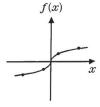
- 21. What are the roots of the equation $x^2 + 3x - 5 = 0$?
 - A. $\frac{-3 \pm \sqrt{29}}{2}$ B. $\frac{3 \pm \sqrt{29}}{2}$
 - C. $\frac{-3 \pm \sqrt{11}}{2}$ D. $\frac{3 \pm \sqrt{11}}{2}$

- 22. What is an equation of the line parallel to the line whose equation is 2x + y = 6 and that passes through the point (0, -1)?
 - A. x + 2y = -1 B. y = -1

 - C. 2x + y = 1 D. y = -2x 1


23. In the diagram at the right, the function $f(x) = x^2$ is represented graphically. Which graph below represents the inverse of f(x)?


A.


B.

C.

D.

- 24. If $\cos x = -\frac{4}{5}$ and $\tan x > 0$, the value

- A. $\frac{3}{5}$ B. $\frac{5}{3}$ C. $-\frac{5}{3}$ D. $-\frac{3}{5}$

- 25. If the terminal side of angle θ passes through the point (-4,3), what is the value of $\cos \theta$?

- A. $\frac{3}{5}$ B. $-\frac{3}{5}$ C. $\frac{4}{5}$ D. $-\frac{4}{5}$

- 26. If $\tan x = -\frac{2}{3}$ and angle x lies in the second quadrant, what is the value of $\cos x$?

 - A. $\frac{3\sqrt{5}}{5}$ B. $-\frac{3\sqrt{5}}{5}$

 - C. $\frac{3\sqrt{13}}{13}$ D. $-\frac{3\sqrt{13}}{13}$

- 27. What is the inverse of the function y = 2x + 3?
 - A. $x = \frac{1}{2}y \frac{3}{2}$ B. $y = \frac{1}{2}x \frac{3}{2}$

 - C. y = 2x 3 D. x = -2y 3

Factor each polynomial completely.

Remember! Try in order of GCF → DOTS → Trinomials → Grouping → Cubes

1.
$$4x^2 + 5x$$

$$2.72 - 2x^2$$

$$3.3x^3 + 5x^2 + 7x$$

$$4. a^2b + a^4b^2$$

5.
$$10a^2b - 15ab - 4a + 6$$

$$6. x^2 + 5x + 4$$

$$7.2x^2 - 8x - 90$$

$$8.3x^3 + 6x^2 - 27x - 54$$

9.
$$x^4 - 16$$

10.
$$3a^3 - 9a^2 - 54a$$

11.
$$p^2 - 24p + 63$$

12.
$$wz^4 + 2wz^3 - 80wz^2$$

13.
$$3x^2y - 6xy - 45y$$

14.
$$4y^3 + 12y^2 - 72y$$

15.
$$3x^2 + 15x + 18$$

16.
$$10p^2 - 100p + 90$$

17.
$$4x^2 + 5x + 1$$

$$18.3c^2 - 13c + 4$$

19.
$$x^2 - 24x$$

$$20.4x^2 - 1$$

21.
$$6x^5y - 6xy^5$$

22.
$$81 - x^4$$

23.
$$ay^2 - by^2 - 9a + 9b$$

24.
$$3y^2 - 147$$

25.
$$x^2 - y^2 + 10y - 25$$

$$26. x^2 + 4xy + 4y^2 - 25$$

$$27.8x^3 - 1$$

28.
$$b^2 - bx - 2b + 2x$$

$$29.3d^3 + 81$$

$$30. x^2 - 6x + 9 - 36y^2$$